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ABSTRACT.

Objective. A schema was recently proposed for assessing the levels of evidence for surrogate validity
that included 4 domains: Target, Study Design, Statistical Strength, and Penalties. This report examines
one component of the schema. It surveys the literature on methods of statistical validation of surrogate
markers and compares these methods head-to-head using simulated datasets.

Methods. Simulated datasets (continuous, multivariate normal) were generated to capture 3 possible
relationships of surrogate (S) and true (T) outcome (none, weakly positive, strongly positive) each
applied to 4 treatment effects (effect on both surrogate and true outcome, effect on neither, effect on sur-
rogate only, and effect on true outcome only). These datasets were analyzed using single and multitrial
statistical approaches, and the results were provided to participants for discussion.

Results. The multitrial surrogate threshold effect seemed to capture best the requirement that surrogate
validation is demonstrated by a treatment-associated change in the surrogate predicting a treatment-
associated change in the outcome.

Conclusion. There was general agreement that neither a single trial nor any of the single trial statisti-
cal methods was adequate to establish surrogate validity. These exercises also showed that summary sta-
tistics developed specifically to establish surrogate validity, such as the proportion of the effect
explained, were problematic. A sizable statistical research agenda remains, which includes investigat-
ing the additional advantage obtained with modeling subject-level data compared to modeling with only
trial-level data; and developing and testing multitrial statistical approaches robust to settings with only

a few trials. (J Rheumatol 2007;34:616-9)

Key Indexing Terms:

SURROGATE BIOMARKER

At OMERACT 8 a proposed schema for assessing the levels
of evidence for surrogate validity was discussed at a work-
shop!. The schema scores markers across 4 domains: Target,
Study Design, Statistical Strength, and Penalties. The issues
regarding the statistical validation of surrogates are briefly
reviewed, and the results of applying several statistical meth-
ods to the examination of simulated and real datasets are pre-
sented here. We wanted to engender a free discussion between
clinicians and statisticians on the fundamental nature of the
statistical aspect of analysis of surrogate and outcome data,
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STATISTICS VALIDATION

and on the relative strengths and weaknesses of methods pro-
posed to date. We also wanted to begin a process of formally
comparing different methods with the same datasets, an
approach that seemed most transparent to nonstatisticians.

Overview of the literature

There are 2 general approaches to statistical validation of sur-
rogate outcomes: statistical analysis of single trials and statis-
tical analysis of multiple trials (metaanalytic assessments).
These are briefly summarized, and we direct interested read-
ers to reviews published in the statistical literature?. Both
approaches usually require that a change in a surrogate out-
come is associated with or predicts a change in the true out-
come.

Single-trial statistical approaches. The first formal approach
to testing for statistical validity of surrogacy using the single-
trial approach was proposed by Prentice in 19893, although
there had been earlier instances of assessing trial data of clin-
ical outcomes from multiple trials in order to inform registra-
tion deliberations for a new drug in the same class, and
instances of trial-based modeling of outcome change versus
surrogate change®. However, Prentice was the first to general-
ize the process and articulate “all or nothing” criteria for its
validity. Additionally, during the 1980s the promotion of sur-
rogates supported only with observational data began to be
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questioned. The most prominent example of this was the con-
duct and publication of the Cardiac Arrhythmia Suppression
Trial (CAST)>. Such upsets have remained a spur to trialists
and methodologists in their quest for criteria for surrogate
validity. In the early 1990s the issue was given additional
urgency by hopes that the CD4 marker would be a valid sur-
rogate and thus help accelerate drug development in
HIV/AIDS.

In contrast to the “all or nothing” approach, Freedman, et
al® in 1992 suggested a graded criterion for surrogacy validi-
ty depending on the relation between treatment and outcome
(the coefficient of the treatment term in the model reflecting
the steepness of the slope) and its change when the surrogate
is introduced into the model. A surrogate is more valid to the
degree that the treatment coefficient is reduced when the sur-
rogate is added. The Freedman criterion is called the “propor-
tion of treatment effect explained” (PTE). However, others
have commented on the conceptual and mathematical diffi-
culties of this approach’.

Multiple-trial statistical approaches. By the mid 1990s a
number of proposals moved beyond the single-trial methods
of Prentice and Freedman to methods applicable to the simul-
taneous analysis of multiple trials®-10. These included both
frequentist and Bayesian metaanalyses, some with hierarchi-
cal modeling. Importantly, some methods now proposed mod-
eling a comparison of the outcome in the treated versus the
control arm of randomized trials as a function of a comparison
of the surrogate in the treated versus the control arm. This
approach captured the essential difference between a validat-
ed surrogate marker and a validated prognostic marker, where
the latter implies the marker predicts the outcome (“predictive
validity”) and the former implies a change in the marker asso-
ciated with treatment predicts a change in the outcome.
However, these approaches are not mutually exclusive, and a
marker could be both. These methods are based on multivari-
ate regression modeling of trials (or, both trials and patients in
hierarchical regression models). Recent work!!"13 has used
models and calculated prediction (forecast) bands!# that show
the range (within 95% limits) for the predicted outcome for a
particular future trial.

Head-to-head comparison of statistical validation of sur-
rogate data using simulated trial datasets

To begin the process of directly comparing the different sta-
tistical methods in head-to-head comparisons, a series of sim-
ulated trial data results were generated. The conventional
notation for the statistical validation of surrogate outcomes
using clinical trial datasets is: S, the “surrogate” variable; T,
the “true endpoint” variable; and Z, the “treatment” binary
variable (where the control group has the value of 0 and the
treatment group the value of 1). For this initial exercise, both
the surrogate and true outcome were assumed to be continu-
ous and have a multivariate normal distribution in a 2-arm
trial (single treatment arm and single control arm). The setting

was designed to mimic rheumatoid arthritis (RA) with the sur-
rogate, S, being a soluble cytokine marker elevated in active
RA, and therefore the focus of treatment Z, a monoclonal anti-
body. S is measured continuously on a 0 (best) to 1000 (worst)
scale. The outcome, T, a patient-centered outcome of function,
is a scale like the Health Assessment Questionnaire (HAQ),
but disaggregated into 24 possible ratings (0-3 for each of its
8 categories), therefore ranging from O (best) to 24 (worst).
The 24-point interval scale is close enough to a continuous
variable for our purposes. The aim of therapy is a reduction in
S with the hope that this will translate into a reduction in T.

Simulated trial datasets were generated with random-num-
ber simulations using the statistical packages Stata 9 (Stata
Corp., College Station, TX, USA) and R (The R Foundation
for Statistical Computing, Vienna, Austria. Available from:
http://www.r-project.org/). These simulated datasets were
designed to capture the various correlations of surrogate and
true outcome (3 possible correlations: none, weakly positive,
strongly positive), each applied to various treatment effects (4
possibilities: effect on both surrogate and true outcome, effect
on neither, effect on surrogate only, and effect on true end-
point only). Twelve single-trial datasets were generated, each
with 200 subjects, 100 per treatment arm. Two multitrial data
sets, each with 20 trials, again each with sample size 200,
were also generated. One multitrial set consisted of results
contrived to support surrogacy, and the other intentionally
made an admixture of trials with conflicting results. All
datasets are available on request. The dataset relationships
were “blinded” and analyzed using the following approaches:
correlation between S and T unadjusted and adjusted for treat-
ment; coefficient of S on T, adjusted for treatment, and its sig-
nificance; single-trial R-squared (R?, proportion of variance
explained by the model, a measure of dispersion) of T given
S, unadjusted and adjusted for treatment; Proportion of the
Treatment effect Explained (PTE), Relative Effect (RE),
multitrial R% , R% ..\« R2_ . and Surrogate Thresh-
old Effect (STE)'2!5. The results were presented to the group
and discussed to evaluate which method or methods were the
most useful for judging whether S was a valid surrogate for T.

There was a clear preference for multitrial over single-trial
approaches. In the single-trial approaches, the participants
appeared to rely mainly on whether the treatment coefficient
was statistically significant in analyses without and with the
surrogate term. The participants also appeared to rely on the
RZ? measures of the models, and there was consensus that a
surrogate with less dispersion (larger R?) was preferable to
one with more dispersion. Rarely did the PTE appear helpful,
and some of the results of this statistic were difficult to inter-
pret. The Relative Effect was also difficult to interpret.

In the multitrial setting, hierarchical models to obtain
Rzmal, R2indiviclual were unsuccessful because of failure of con-
vergence. Most participants found the STE most promising. In
this approach the trial rather than the individual is the unit of
analysis, and one directly adjusts for Z (the treatment vari-
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able). The STE provides (1) the statistical significance of the
surrogate—true outcome relationship; (2) the explained vari-
ance of the surrogate—true outcome relationship (R?); and (3)
the numerical threshold (in the units of the measure) above
which a surrogate benefit reliably estimates a true outcome
benefit. This is best illustrated in the following 2 examples. In
multitrials 1 and 2 (Figure 1) the horizontal axis is the differ-

ence, treatment arm versus control arm, of the cytokine level,
and the vertical axis is the difference, treatment arm versus
control arm, in physical function. The broken line is the mean
regression line (fixed effects model), the shaded narrower
band is the 95% confidence band for the mean regression, and
the solid-line wider band is the 95% prediction band for an
individual trial. The critical point (the surrogate threshold) is

Physical Function (Treatment vs Control) Difference
0
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Figure 1. Surrogate threshold effect (STE) in simulated multitrial datasets. Difference
(treatment vs control) of soluble cytokine levels (horizontal axis) versus difference (treat-
ment vs control) in physical function (vertical axis). Negative numbers denote treatment
better than control. Upper graph: simulated multitrial dataset 1 generated to support surro-
gate-true outcome relationship. Lower graph: simulated multitrial dataset 2 generated to
show no surrogate-true outcome relationship. Broken line, gray band: mean regression line
and its 95% confidence band; solid lines: limits of the 95% prediction band for an individ-
ual trial. In the upper graph, a difference of cytokine levels between treatment and control
of —40 units or more has a 95% CI that excludes a nil difference of change in physical func-
tion. In other words, at or above this threshold an effect on the cytokine levels reliably pre-
dicts a favorable effect on the true outcome. In the lower graph, no level of cytokine reduc-
tion demonstrates a physical function benefit as all y-values are greater than zero.
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where the 95% prediction band fully excludes no physical
function benefit, i.e., the entire 95% prediction band lies
below the x-axis. In multitrial 1 (the upper graph), only trials
with mean cytokine reduction of = 40 mmol/l are associated
with physical function benefit, whereas in multitrial 2 (lower
graph), at no point is cytokine reduction associated with
physical function benefit. In multitrial 1 the adjusted R? of
the regression model was high (0.93) and the model was sta-
tistically significant (p < 0.001). Even with removal of out-
liers from this model, the threshold remains at around —40,
although the adjusted R? is now 0.78. In multitrial 1, the
regression line is oriented at about 35 degrees. If the line
were steeper, then a wider prediction band could be tolerated,
still with the same threshold of —40. By contrast, in multitri-
al 2 the adjusted R? was 0.00 and the model was not signifi-
cant (p = 0.7).

Conclusions and research agenda

In these simulated dataset exercises, where both the surrogate
and true outcome assumed a continuous and multivariate nor-
mal distribution in a 2-arm trial (single treatment arm and sin-
gle control arm), there was consensus that none of the single
trial approaches [correlation between S and T unadjusted and
adjusted for treatment; coefficient of S on T adjusted for treat-
ment and its significance; single-trial R-squared (proportion
of variance explained by the model) of T given S unadjusted
and adjusted for treatment; Proportion of the Treatment effect
Explained, Relative Effect] individually was adequate to
establish surrogate validity. These exercises also showed that
summary statistics developed specifically to establish surro-
gate validity, such as the PTE, were problematic. There was
general agreement that a single trial was not adequate to estab-
lish surrogate validity, not only because there is no appropri-
ate statistical test but also because one should be wary, in
principle, of relying on a single trial. Multitrial approaches
were preferred to the analysis of single trials, and the multitri-
al STE approach to the statistical validation of surrogate data,
which adjusts directly for Z (the treatment variable). It seemed
to us, in principle, that the multitrial approach with the STE
may even be superior to multiple single-trial analyses of trials
for which there are subject-level data.

The statistical research agenda is sizeable. To date the
majority of datasets for the statistical evaluation of surrogate
validity come from cardiology, oncology, and HIV/AIDS, all
of which have many trials, with many classes of interventions
for analysis. Even in these disciplines, subject-level data are
not always freely available. Therefore, multitrial approaches
involving a smaller number of trials and the incremental
advantage of modeling subject-level data above trial-level

data alone are important areas for further investigation. In our
exercises both the surrogate and true outcome assumed a con-
tinuous and multivariate normal distribution in a 2-arm trial.
Other scenarios require evaluation: noncontinuous variables
(such as binary or time-to-event variables), non-normal distri-
butions, datasets with significant treatment-surrogate interac-
tions; and datasets where treatment effects are partially mediat-
ed independent of the surrogate. We anticipate that continuing
interdisciplinary dialog will move the research agenda forward.
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